Obstruction

Feature Tester
Joined
January 31, 2019
Posts
382
Location
New York City
Does anyone have a screenshot of the map Obstruction?
I believe it was an Assault map with gray colored elevation.
 

Pawn Moderator
Joined
January 1, 2019
Posts
266
Location
East Coast
edit: it's TKH
26&29&city&0$4,2^0$2,3^0$4,3^0$6,3^0$5,4^0$2,5^0$5,5^0$3,6^0$4,6^0$3,7^0$4,7^0$2,8^0$5,8^0$2,10^0$3,10^0$3,11^0$5,11^0$4,12^0$5,13^1$20,15^1$21,16^1$20,17^1$22,17^1$22,18^1$23,18^1$20,20^1$23,20^1$21,21^1$22,21^1$21,22^1$22,22^1$20,23^1$23,23^1$20,24^1$19,25^1$21,25^1$23,25^1$21,26&0,0$205,2112,0,0^1,0$205,2112,0,0^2,0$205,2112,0,0^3,0$205,2112,0,0^4,0$205,2112,0,0^5,0$205,2112,0,0^6,0$205,2112,0,0^7,0$205,2112,0,0^8,0$205,2112,0,0^9,0$205,2112,0,0^10,0$205,2112,0,0^11,0$205,2112,0,0^12,0$205,2112,0,0^13,0$205,2112,0,0^14,0$205,2112,0,0^15,0$204,2112,0,0^16,0$203,1201,0,0^17,0$210,0110,0,0^18,0$210,0110,0,0^19,0$34,2112,-1,0^20,0$33,1201,-1,0^21,0$33,1201,-1,0^22,0$33,1201,-1,0^23,0$33,1201,-1,0^24,0$33,1201,-1,0^25,0$34,1201,-1,0^0,1$205,2112,0,0^1,1$204,2112,0,0^2,1$202,1201,0,0^3,1$202,1201,0,0^4,1$202,1201,0,0^5,1$202,1201,0,0^6,1$202,1201,0,0^7,1$202,1201,0,0^8,1$202,1201,0,0^9,1$202,1201,0,0^10,1$204,1201,0,0^11,1$205,2112,0,0^12,1$205,2112,0,0^13,1$205,2112,0,0^14,1$205,2112,0,0^15,1$202,2112,0,0^16,1$210,0110,0,0^17,1$30,0110,0,0^18,1$30,0110,0,0^19,1$38,2112,-1,0^20,1$2,2112,-1,7^21,1$2,2112,-1,7^22,1$2,2112,-1,7^23,1$2,2112,-1,7^24,1$2,2112,-1,7^25,1$33,0110,-1,0^0,2$207,0112,0,0^1,2$202,2112,0,0^2,2$15,2112,0,0^3,2$15,0112,0,0^4,2$0,2112,0,0^5,2$14,2112,0,0^6,2$14,0110,0,0^10,2$202,0110,0,0^11,2$206,2112,0,0^12,2$205,2112,0,0^13,2$205,0110,0,0^14,2$204,2112,0,0^15,2$203,1201,0,0^16,2$30,0110,0,0^17,2$30,0110,0,0^18,2$30,0110,0,0^19,2$33,2112,-1,0^20,2$2,2112,-1,7^21,2$2,2112,-1,7^22,2$2,2112,-1,7^23,2$2,2112,-1,7^24,2$2,2112,-1,7^25,2$33,0110,-1,0^0,3$205,2112,0,0^1,3$202,2112,0,0^2,3$118,2112,0,0^3,3$119,2112,0,0^4,3$0,2112,0,0^6,3$0,2112,0,0^10,3$202,0110,0,0^11,3$205,2112,0,0^12,3$207,0112,0,0^13,3$205,2112,0,0^14,3$202,2112,0,0^15,3$30,0110,0,0^16,3$30,0110,0,0^17,3$30,0110,0,0^18,3$30,0110,0,0^19,3$38,2112,-1,0^20,3$2,2112,-1,7^21,3$2,2112,-1,7^22,3$2,2112,-1,7^23,3$2,2112,-1,7^24,3$2,2112,-1,7^25,3$33,0110,-1,0^0,4$205,2112,0,0^1,4$202,2112,0,0^2,4$120,2112,0,0^3,4$121,2112,0,0^5,4$0,2112,0,0^10,4$203,0110,0,0^11,4$204,0112,0,0^12,4$205,2112,0,0^13,4$204,2112,0,0^14,4$203,1201,0,0^15,4$30,0110,0,0^16,4$30,0110,0,0^17,4$30,0110,0,0^18,4$30,0110,0,0^19,4$34,2110,-1,0^20,4$33,1021,-1,0^21,4$33,1021,-1,0^22,4$33,1021,-1,0^23,4$33,1021,-1,0^24,4$33,1021,-1,0^25,4$34,0110,-1,0^0,5$205,2112,0,0^1,5$202,2112,0,0^2,5$0,2112,0,0^5,5$0,2112,0,0^6,5$81,1201,0,0^7,5$187,2110,0,0^8,5$188,0110,0,0^9,5$187,0110,0,0^10,5$81,1221,0,0^11,5$202,0110,0,0^12,5$205,2112,0,0^13,5$202,2112,0,0^14,5$81,1201,0,0^15,5$187,2110,0,0^16,5$188,2110,0,0^17,5$188,0110,0,0^18,5$187,0110,0,0^19,5$81,0110,0,0^20,5$30,0110,0,0^21,5$30,0110,0,0^22,5$30,0110,0,0^23,5$30,0110,0,0^24,5$30,0110,0,0^25,5$210,0110,0,0^0,6$205,2112,0,0^1,6$202,2112,0,0^3,6$0,2112,0,0^4,6$0,2112,0,0^6,6$82,1001,0,0^7,6$2,2112,0,0^8,6$2,2112,0,0^9,6$2,2112,0,0^10,6$82,1021,0,0^11,6$202,0110,0,0^12,6$205,2112,0,0^13,6$202,2112,0,0^14,6$82,1201,0,0^15,6$2,0110,0,0^16,6$2,0110,0,0^17,6$2,0110,0,0^18,6$2,0110,0,0^19,6$210,0110,0,0^20,6$188,0110,0,0^21,6$188,0110,0,0^22,6$188,0110,0,0^23,6$188,0110,0,0^24,6$188,0110,0,0^25,6$210,0110,0,0^0,7$205,2112,0,0^1,7$202,2112,0,0^3,7$0,2112,0,0^4,7$0,2112,0,0^6,7$82,1001,0,0^7,7$2,2112,0,0^8,7$2,2112,0,0^9,7$2,2112,0,0^10,7$82,1021,0,0^11,7$202,0110,0,0^12,7$207,0110,0,0^13,7$202,2112,0,0^14,7$83,1001,0,0^15,7$92,0112,0,0^16,7$2,0110,0,0^17,7$2,0110,0,0^18,7$2,0110,0,0^19,7$84,2112,0,0^20,7$82,2112,0,0^21,7$82,2112,0,0^22,7$66,1201,0,0^23,7$63,1201,0,0^24,7$82,2112,0,0^25,7$82,2112,0,0^0,8$205,2112,0,0^1,8$202,2112,0,0^2,8$0,2112,0,0^5,8$0,2112,0,0^6,8$82,1001,0,0^7,8$92,1221,0,0^8,8$2,2112,0,0^9,8$2,2112,0,0^10,8$82,1021,0,0^11,8$203,0110,0,0^12,8$202,1201,0,0^13,8$203,1201,0,0^14,8$82,1201,0,0^15,8$2,0110,0,0^16,8$2,0110,0,0^17,8$2,0110,0,0^18,8$2,0110,0,0^19,8$82,1221,0,0^20,8$13,1201,0,0^21,8$69,1201,0,0^22,8$67,1201,0,0^23,8$64,1201,0,0^24,8$61,1201,0,0^25,8$0,0110,0,0^0,9$205,2112,0,0^1,9$202,2112,0,0^2,9$14,2112,0,0^3,9$14,0110,0,0^4,9$118,2112,0,0^5,9$119,2112,0,0^6,9$83,1001,0,0^7,9$86,1021,0,0^8,9$2,2112,0,0^9,9$2,2112,0,0^10,9$84,1021,0,0^11,9$83,0110,0,0^12,9$82,2110,0,0^13,9$83,2110,0,0^14,9$84,1001,0,0^15,9$2,0110,0,0^16,9$2,0110,0,0^17,9$2,0110,0,0^18,9$2,0110,0,0^19,9$187,1221,0,0^20,9$12,0110,0,0^21,9$70,1201,0,0^22,9$68,1201,0,0^23,9$65,1201,0,0^24,9$62,1201,0,0^25,9$0,0110,0,0^0,10$205,2112,0,0^1,10$202,2112,0,0^2,10$0,2112,0,0^3,10$0,2112,0,0^4,10$120,2112,0,0^5,10$121,2112,0,0^6,10$82,1001,0,0^7,10$2,2112,0,0^8,10$2,2112,0,0^9,10$2,2112,0,0^10,10$90,2112,0,0^11,10$86,1021,0,0^12,10$38,1021,0,0^13,10$86,2112,0,0^14,10$201,1201,0,0^15,10$2,0110,0,0^16,10$2,0110,0,0^17,10$2,0110,0,0^18,10$2,0110,0,0^19,10$188,1021,0,0^20,10$12,0110,0,0^21,10$0,0110,0,0^22,10$0,0110,0,0^23,10$0,0110,0,0^24,10$0,0110,0,0^25,10$0,0110,0,0^0,11$208,2112,0,0^1,11$202,2112,0,0^3,11$0,2112,0,0^5,11$0,2112,0,0^6,11$82,1001,0,0^7,11$2,2112,0,0^8,11$2,2112,0,0^9,11$2,2112,0,0^10,11$92,1001,0,0^11,11$33,0110,0,0^12,11$30,2112,1,0^13,11$33,2112,0,0^14,11$92,1001,0,0^15,11$2,0110,0,0^16,11$2,0110,0,0^17,11$37,1021,0,0^18,11$37,1001,0,0^19,11$187,1021,0,0^20,11$12,0110,0,0^21,11$14,1201,0,0^22,11$0,0110,0,0^23,11$0,0110,0,0^24,11$0,0110,0,0^25,11$0,0110,0,0^0,12$207,0112,0,0^1,12$202,2112,0,0^2,12$118,2112,0,0^3,12$119,2112,0,0^4,12$0,2112,0,0^6,12$82,1001,0,0^7,12$2,2112,0,0^8,12$37,1021,0,0^9,12$38,1021,0,0^10,12$33,1021,0,0^11,12$34,0110,0,0^12,12$30,0110,1,0^13,12$38,2112,0,0^14,12$2,0110,0,0^15,12$2,0110,0,0^16,12$2,0110,0,0^17,12$33,0110,0,0^18,12$33,2112,0,0^19,12$82,1221,0,0^20,12$13,0110,0,0^21,12$14,1021,0,0^22,12$0,0110,0,0^23,12$0,0110,0,0^24,12$0,0110,0,0^25,12$210,0110,0,0^0,13$205,2112,0,0^1,13$202,2112,0,0^2,13$120,2112,0,0^3,13$121,2112,0,0^5,13$0,2112,0,0^6,13$82,1001,0,0^7,13$2,2112,0,0^8,13$38,0110,0,0^9,13$30,2112,1,0^10,13$34,2112,0,0^11,13$33,1201,0,0^12,13$33,1201,0,0^13,13$37,1201,0,0^14,13$2,0110,0,0^15,13$2,0110,0,0^16,13$37,1021,0,0^17,13$34,0110,0,0^18,13$33,2112,0,0^19,13$82,1221,0,0^20,13$0,0110,0,0^21,13$0,0110,0,0^22,13$0,0110,0,0^23,13$0,0110,0,0^24,13$203,1021,0,0^25,13$202,1021,0,0^0,14$205,2112,0,0^1,14$202,2112,0,0^4,14$19,1201,0,0^5,14$20,1201,0,0^6,14$82,1001,0,0^7,14$37,1021,0,0^8,14$34,0110,0,0^9,14$34,2112,0,0^10,14$37,1201,0,0^11,14$187,0110,0,0^12,14$81,0110,0,0^13,14$81,2112,0,0^14,14$187,2112,0,0^15,14$37,1021,0,0^16,14$34,0110,0,0^17,14$34,2112,0,0^18,14$37,1201,0,0^19,14$82,1221,0,0^20,14$20,1021,0,0^21,14$19,1021,0,0^22,14$0,0110,0,0^23,14$0,0110,0,0^24,14$202,0110,0,0^25,14$207,0112,0,0^0,15$202,1201,0,0^1,15$203,1201,0,0^6,15$82,1001,0,0^7,15$33,0110,0,0^8,15$34,2112,0,0^9,15$37,1201,0,0^10,15$2,2112,0,0^11,15$2,2112,0,0^12,15$37,1021,0,0^13,15$33,1021,0,0^14,15$33,1021,0,0^15,15$34,0110,0,0^16,15$30,0110,1,0^17,15$38,2112,0,0^18,15$2,0110,0,0^19,15$82,1221,0,0^20,15$0,0110,0,0^21,15$0,0110,0,0^22,15$121,0110,0,0^23,15$120,0110,0,0^24,15$202,0110,0,0^25,15$205,0110,0,0^0,16$210,2112,0,0^4,16$14,1201,0,0^5,16$13,2112,0,0^6,16$82,1001,0,0^7,16$33,0110,0,0^8,16$33,2112,0,0^9,16$2,2112,0,0^10,16$2,2112,0,0^11,16$2,2112,0,0^12,16$38,0110,0,0^13,16$30,2112,1,0^14,16$34,2112,0,0^15,16$33,1201,0,0^16,16$38,1201,0,0^17,16$37,1201,0,0^18,16$2,0110,0,0^19,16$82,1221,0,0^20,16$0,0110,0,0^21,16$0,0110,0,0^22,16$119,0110,0,0^23,16$118,0110,0,0^24,16$202,0110,0,0^25,16$205,0110,0,0^4,17$14,1021,0,0^5,17$12,2112,0,0^6,17$187,1201,0,0^7,17$37,1221,0,0^8,17$37,1201,0,0^9,17$2,2112,0,0^10,17$2,2112,0,0^11,17$92,1221,0,0^12,17$33,0110,0,0^13,17$30,2112,1,0^14,17$33,2112,0,0^15,17$92,1221,0,0^16,17$2,0110,0,0^17,17$2,0110,0,0^18,17$2,0110,0,0^19,17$82,1221,0,0^20,17$0,0110,0,0^21,17$0,0110,0,0^22,17$0,0110,0,0^23,17$0,0110,0,0^24,17$202,0110,0,0^25,17$205,0110,0,0^5,18$12,2112,0,0^6,18$188,1201,0,0^7,18$2,2112,0,0^8,18$2,2112,0,0^9,18$2,2112,0,0^10,18$2,2112,0,0^11,18$201,1021,0,0^12,18$86,0110,0,0^13,18$38,1201,0,0^14,18$86,1201,0,0^15,18$90,0110,0,0^16,18$2,0110,0,0^17,18$2,0110,0,0^18,18$2,0110,0,0^19,18$82,1221,0,0^20,18$121,0110,0,0^21,18$120,0110,0,0^22,18$0,0110,0,0^23,18$0,0110,0,0^24,18$202,0110,0,0^25,18$205,0110,0,0^1,19$62,1021,0,0^2,19$65,1021,0,0^3,19$68,1021,0,0^4,19$70,1021,0,0^5,19$12,2112,0,0^6,19$187,1001,0,0^7,19$2,2112,0,0^8,19$2,2112,0,0^9,19$2,2112,0,0^10,19$2,2112,0,0^11,19$84,1221,0,0^12,19$83,0112,0,0^13,19$82,0112,0,0^14,19$83,2112,0,0^15,19$84,1201,0,0^16,19$2,0110,0,0^17,19$2,0110,0,0^18,19$86,1201,0,0^19,19$83,1221,0,0^20,19$119,0110,0,0^21,19$118,0110,0,0^22,19$14,2112,0,0^23,19$14,0110,0,0^24,19$202,0110,0,0^25,19$205,0110,0,0^1,20$61,1021,0,0^2,20$64,1021,0,0^3,20$67,1021,0,0^4,20$69,1021,0,0^5,20$13,1021,0,0^6,20$82,1001,0,0^7,20$2,2112,0,0^8,20$2,2112,0,0^9,20$2,2112,0,0^10,20$2,2112,0,0^11,20$82,1021,0,0^12,20$203,1021,0,0^13,20$202,1021,0,0^14,20$203,2112,0,0^15,20$82,1201,0,0^16,20$2,0110,0,0^17,20$2,0110,0,0^18,20$92,1001,0,0^19,20$82,1221,0,0^20,20$0,0110,0,0^21,20$0,0110,0,0^22,20$0,0110,0,0^23,20$0,0110,0,0^24,20$202,0110,0,0^25,20$205,0110,0,0^0,21$82,0110,0,0^1,21$82,0110,0,0^2,21$63,1021,0,0^3,21$66,1021,0,0^4,21$82,0110,0,0^5,21$82,0110,0,0^6,21$84,0110,0,0^7,21$2,2112,0,0^8,21$2,2112,0,0^9,21$2,2112,0,0^10,21$92,2110,0,0^11,21$83,1221,0,0^12,21$202,0110,0,0^13,21$205,0110,0,0^14,21$202,2112,0,0^15,21$82,1201,0,0^16,21$2,0110,0,0^17,21$2,0110,0,0^18,21$2,2112,0,0^19,21$82,1221,0,0^20,21$0,0110,0,0^21,21$0,0110,0,0^22,21$0,0110,0,0^23,21$0,0110,0,0^24,21$202,0110,0,0^25,21$205,0110,0,0^0,22$210,2112,0,0^1,22$188,2112,0,0^2,22$188,2112,0,0^3,22$188,2112,0,0^4,22$188,2112,0,0^5,22$188,2112,0,0^6,22$210,2112,0,0^7,22$2,2112,0,0^8,22$2,2112,0,0^9,22$2,2112,0,0^10,22$2,2112,0,0^11,22$82,1021,0,0^12,22$202,0110,0,0^13,22$205,0110,0,0^14,22$202,2112,0,0^15,22$82,1201,0,0^16,22$2,0110,0,0^17,22$2,0110,0,0^18,22$2,0110,0,0^19,22$82,1221,0,0^20,22$0,0110,0,0^21,22$0,0110,0,0^22,22$0,0110,0,0^23,22$0,0110,0,0^24,22$202,0110,0,0^25,22$205,0110,0,0^0,23$210,2112,0,0^1,23$30,2112,0,0^2,23$30,2112,0,0^3,23$30,2112,0,0^4,23$30,2112,0,0^5,23$30,2112,0,0^6,23$81,2112,0,0^7,23$187,2112,0,0^8,23$188,2112,0,0^9,23$188,0112,0,0^10,23$187,0112,0,0^11,23$81,1021,0,0^12,23$202,0110,0,0^13,23$205,0110,0,0^14,23$202,2112,0,0^15,23$81,1001,0,0^16,23$187,2112,0,0^17,23$188,2112,0,0^18,23$187,0112,0,0^19,23$81,1021,0,0^20,23$0,0110,0,0^21,23$0,0110,0,0^22,23$0,0110,0,0^23,23$0,0110,0,0^24,23$202,0110,0,0^25,23$205,0110,0,0^0,24$34,2112,-1,0^1,24$33,1201,-1,0^2,24$33,1201,-1,0^3,24$33,1201,-1,0^4,24$33,1201,-1,0^5,24$33,1201,-1,0^6,24$34,0112,-1,0^7,24$30,2112,0,0^8,24$30,2112,0,0^9,24$30,2112,0,0^10,24$30,2112,0,0^11,24$203,1021,0,0^12,24$204,0110,0,0^13,24$205,0110,0,0^14,24$204,2110,0,0^15,24$203,2112,0,0^16,24$0,0110,0,0^17,24$0,0110,0,0^18,24$0,0110,0,0^19,24$0,0110,0,0^20,24$0,0110,0,0^21,24$0,0110,0,0^22,24$121,0110,0,0^23,24$120,0110,0,0^24,24$202,0110,0,0^25,24$205,0110,0,0^0,25$33,2112,-1,0^1,25$2,2112,-1,7^2,25$2,2112,-1,7^3,25$2,2112,-1,7^4,25$2,2112,-1,7^5,25$2,2112,-1,7^6,25$38,0110,-1,0^7,25$30,2112,0,0^8,25$30,2112,0,0^9,25$30,2112,0,0^10,25$30,2112,0,0^11,25$202,0110,0,0^12,25$205,0110,0,0^13,25$205,0110,0,0^14,25$206,2112,0,0^15,25$202,2112,0,0^16,25$0,0110,0,0^17,25$0,0110,0,0^18,25$0,0110,0,0^19,25$0,0110,0,0^20,25$0,0110,0,0^21,25$0,0110,0,0^22,25$119,0110,0,0^23,25$118,0110,0,0^24,25$202,0110,0,0^25,25$205,0110,0,0^0,26$33,2112,-1,0^1,26$2,2112,-1,7^2,26$2,2112,-1,7^3,26$2,2112,-1,7^4,26$2,2112,-1,7^5,26$2,2112,-1,7^6,26$33,0110,-1,0^7,26$30,2112,0,0^8,26$30,2112,0,0^9,26$30,2112,0,0^10,26$203,1021,0,0^11,26$204,0110,0,0^12,26$205,2112,0,0^13,26$205,0110,0,0^14,26$205,0110,0,0^15,26$202,2112,0,0^16,26$0,0110,0,0^17,26$0,0110,0,0^18,26$0,0110,0,0^19,26$14,2112,0,0^20,26$14,0110,0,0^21,26$0,0110,0,0^22,26$15,2110,0,0^23,26$15,0110,0,0^24,26$202,0110,0,0^25,26$205,0110,0,0^0,27$33,2112,-1,0^1,27$2,2112,-1,7^2,27$2,2112,-1,7^3,27$2,2112,-1,7^4,27$2,2112,-1,7^5,27$2,2112,-1,7^6,27$38,0110,-1,0^7,27$30,2112,0,0^8,27$30,2112,0,0^9,27$210,2112,0,0^10,27$202,0110,0,0^11,27$205,0110,0,0^12,27$205,0110,0,0^13,27$205,0110,0,0^14,27$205,0110,0,0^15,27$204,1021,0,0^16,27$202,1021,0,0^17,27$202,1021,0,0^18,27$202,1021,0,0^19,27$202,1021,0,0^20,27$202,1021,0,0^21,27$202,1021,0,0^22,27$202,1021,0,0^23,27$202,1021,0,0^24,27$204,0110,0,0^25,27$208,2112,0,0^0,28$34,1021,-1,0^1,28$33,1021,-1,0^2,28$33,1021,-1,0^3,28$33,1021,-1,0^4,28$33,1021,-1,0^5,28$33,1021,-1,0^6,28$34,0110,-1,0^7,28$210,2112,0,0^8,28$210,2112,0,0^9,28$203,1021,0,0^10,28$204,0110,0,0^11,28$205,0110,0,0^12,28$205,0110,0,0^13,28$205,0110,0,0^14,28$205,0110,0,0^15,28$205,0110,0,0^16,28$205,0110,0,0^17,28$207,0112,0,0^18,28$205,0110,0,0^19,28$205,0110,0,0^20,28$205,0110,0,0^21,28$205,0110,0,0^22,28$205,0110,0,0^23,28$205,0110,0,0^24,28$205,0110,0,0^25,28$205,0110,0,0&
obstruction.png
 
Last edited:
Top Bottom