[CTF] Sleet

Joined
January 31, 2019
Posts
12
clean
map.png

code
Code:
24&24&field&1$23,0^0$4,5^1$23,8^0$4,10^1$19,13^0$0,15^1$19,18^0$0,23&4,0$23,2112,0,0^5,0$21,1201,0,0^6,0$21,1201,0,0^7,0$23,1201,0,0^8,0$84,2112,0,0^9,0$23,2112,0,0^10,0$21,1221,0,0^11,0$21,1221,0,0^12,0$21,1221,0,0^13,0$21,1221,0,0^14,0$23,0112,0,0^15,0$21,2112,0,0^16,0$84,2112,1,0^17,0$56,1201,1,0^18,0$0,2112,1,0^19,0$0,2112,1,0^20,0$0,2112,1,0^21,0$57,0112,1,0^22,0$57,2112,1,0^23,0$0,2112,1,0^1,1$23,2112,0,0^2,1$11,1201,0,0^3,1$21,1201,0,0^4,1$22,1201,0,0^5,1$84,2112,1,0^6,1$57,2112,1,0^7,1$22,1221,0,0^8,1$21,1201,0,0^9,1$22,1201,0,0^10,1$0,2112,1,0^11,1$0,2112,1,0^12,1$57,1021,1,0^13,1$57,2112,1,0^14,1$21,0112,0,0^15,1$21,2112,0,0^16,1$57,1221,1,0^17,1$57,1201,1,0^18,1$22,1021,0,0^19,1$11,1021,0,0^20,1$22,2112,0,0^21,1$56,1221,1,0^22,1$84,2112,1,0^23,1$0,2112,1,0^1,2$21,2112,0,0^2,2$0,2112,1,0^3,2$0,2112,1,0^4,2$0,2112,1,0^5,2$57,0110,1,0^6,2$57,1201,1,0^7,2$22,0112,0,0^8,2$21,1021,0,0^9,2$21,1001,0,0^10,2$21,1001,0,0^11,2$22,2112,0,0^12,2$84,2112,1,0^13,2$56,1201,1,0^14,2$21,0112,0,0^15,2$23,1021,0,0^16,2$21,1021,0,0^17,2$21,1021,0,0^18,2$23,0110,0,0^20,2$21,2112,0,0^21,2$57,1221,1,0^22,2$57,1201,1,0^23,2$0,2112,1,0^1,3$23,1021,0,0^2,3$21,1021,0,0^3,3$21,1021,0,0^4,3$21,1021,0,0^5,3$21,1021,0,0^6,3$21,1021,0,0^7,3$23,0110,0,0^8,3$6,2112,0,0^9,3$5,1021,0,0^10,3$4,1021,0,0^11,3$21,2110,0,0^12,3$57,0110,1,0^13,3$57,1201,1,0^14,3$21,0112,0,0^15,3$0,0110,0,0^16,3$0,0110,0,0^17,3$0,0110,0,0^20,3$23,1021,0,0^21,3$22,2112,0,0^22,3$0,2112,1,0^23,3$0,2112,1,0^0,4$48,0110,0,0^1,4$47,0110,0,0^2,4$46,0110,0,0^3,4$6,2112,0,0^4,4$5,1021,0,0^5,4$5,1021,0,0^6,4$5,1021,0,0^7,4$5,1021,0,0^8,4$6,0110,0,0^9,4$4,1001,0,0^10,4$6,1201,0,0^11,4$21,2112,0,0^12,4$0,2112,1,0^13,4$22,1021,0,0^14,4$23,1001,0,0^16,4$0,0110,0,0^17,4$0,0110,0,0^18,4$0,0110,0,0^19,4$0,0110,0,0^20,4$4,0110,0,0^21,4$21,2112,0,0^22,4$0,2112,1,0^23,4$0,2112,1,0^0,5$43,0110,0,0^1,5$42,0110,0,0^2,5$41,0110,0,0^3,5$5,2112,0,0^4,5$55,0110,0,0^5,5$91,1021,0,0^6,5$93,1021,0,0^7,5$95,1021,0,0^8,5$97,1021,0,0^9,5$84,2112,0,0^10,5$4,0112,0,0^11,5$23,1021,0,0^12,5$22,2112,0,0^13,5$11,0110,0,0^16,5$0,0110,0,0^17,5$0,0110,0,0^18,5$0,0110,0,0^19,5$0,0110,0,0^20,5$4,0112,0,0^21,5$21,2112,0,0^22,5$57,1021,1,0^23,5$57,1001,1,0^0,6$38,0110,0,0^1,6$37,0110,0,0^2,6$6,2112,0,0^3,6$6,0110,0,0^4,6$55,2112,0,0^5,6$90,1021,0,0^6,6$92,1021,0,0^7,6$94,1021,0,0^8,6$96,1021,0,0^9,6$55,2112,0,0^10,6$74,0112,0,0^11,6$0,0110,0,0^12,6$23,1021,0,0^13,6$23,1001,0,0^15,6$0,0110,0,0^16,6$0,0110,0,0^17,6$84,2112,1,0^18,6$0,0110,0,0^19,6$0,0110,0,0^20,6$23,1221,0,0^21,6$22,1201,0,0^22,6$56,1021,1,0^23,6$84,2112,1,0^0,7$33,0110,0,0^1,7$32,0110,0,0^2,7$5,2112,0,0^3,7$55,2112,0,0^4,7$55,2112,0,0^5,7$55,2112,0,0^6,7$55,2112,0,0^7,7$55,2112,0,0^8,7$55,2112,0,0^9,7$55,2112,0,0^10,7$4,1001,0,0^11,7$5,1021,0,0^12,7$5,1021,0,0^13,7$6,1201,0,0^15,7$0,0110,0,0^16,7$0,0110,0,0^17,7$0,0110,0,0^18,7$0,0110,0,0^19,7$0,0110,0,0^20,7$21,2110,0,0^21,7$0,2112,1,0^22,7$57,1221,1,0^23,7$57,1201,1,0^0,8$28,0110,0,0^1,8$27,0110,0,0^2,8$4,2112,0,0^3,8$58,1021,0,0^4,8$55,2112,0,0^5,8$55,2112,0,0^6,8$55,2112,0,0^7,8$62,2112,0,1^8,8$55,2112,0,0^9,8$55,2112,0,0^10,8$89,2110,0,0^11,8$89,0110,0,0^12,8$55,0110,0,0^13,8$6,1021,0,0^14,8$5,1021,0,0^15,8$6,1201,0,0^16,8$0,0110,0,0^17,8$0,0110,0,0^18,8$0,0110,0,0^19,8$0,0110,0,0^20,8$23,2110,0,0^21,8$11,1021,0,0^22,8$22,2112,0,0^23,8$0,2112,1,0^3,9$56,1021,0,0^4,9$55,2112,0,0^5,9$55,2112,0,0^6,9$55,2112,0,0^7,9$55,2112,0,0^8,9$55,2112,0,0^9,9$55,2112,0,0^10,9$55,2112,0,0^11,9$55,2112,0,0^12,9$55,0110,0,0^13,9$104,0110,0,0^14,9$102,2112,1,0^15,9$5,2112,0,0^16,9$0,0110,0,0^17,9$0,0110,0,0^18,9$0,0110,0,0^19,9$0,0110,0,0^21,9$0,0110,0,0^22,9$23,2110,0,0^23,9$21,1001,0,0^0,10$0,0110,0,0^1,10$0,0110,0,0^2,10$0,0110,0,0^3,10$4,0110,0,0^4,10$55,0110,0,0^5,10$55,2112,0,0^6,10$55,2112,0,0^7,10$55,2112,0,0^8,10$55,2112,0,0^9,10$55,2112,0,0^10,10$55,2112,0,0^11,10$55,0110,0,0^12,10$103,1021,0,0^13,10$101,0110,0,0^14,10$102,2112,1,0^15,10$5,2112,0,0^16,10$0,0110,0,0^17,10$0,0110,0,0^18,10$0,0110,0,0^21,10$0,0110,0,0^22,10$0,0110,0,0^23,10$0,0110,0,0^0,11$0,0110,0,0^1,11$84,0110,1,0^2,11$0,0110,0,0^3,11$6,1021,0,0^4,11$6,1201,0,0^5,11$58,1001,0,0^6,11$56,2110,0,0^7,11$56,0110,0,0^8,11$58,1021,0,0^9,11$55,2112,0,0^10,11$55,2112,0,0^11,11$6,2112,0,0^12,11$6,1201,0,0^13,11$59,1201,0,0^14,11$59,1201,0,0^15,11$4,2112,0,0^16,11$0,0110,0,0^17,11$0,0110,0,0^18,11$4,1201,0,0^19,11$6,1201,0,0^21,11$0,0110,0,0^22,11$0,0110,0,0^23,11$0,0110,0,0^3,12$0,0110,0,0^4,12$6,1021,0,0^5,12$4,1021,0,0^8,12$4,0110,0,0^9,12$59,1001,0,0^10,12$59,1001,0,0^11,12$6,1021,0,0^12,12$6,0110,0,0^13,12$55,0110,0,0^14,12$55,0110,0,0^15,12$58,1201,0,0^16,12$56,0112,0,0^17,12$56,0112,0,0^18,12$58,1221,0,0^19,12$6,1021,0,0^20,12$6,1201,0,0^21,12$0,0110,0,0^22,12$84,2112,1,0^23,12$0,0110,0,0^3,13$0,0110,0,0^4,13$0,0110,0,0^8,13$5,0110,0,0^9,13$102,0110,1,0^10,13$101,2112,0,0^11,13$103,1201,0,0^12,13$55,0110,0,0^13,13$55,0110,0,0^14,13$55,0110,0,0^15,13$55,0110,0,0^16,13$55,0110,0,0^17,13$55,0110,0,0^18,13$55,0110,0,0^19,13$55,0110,0,0^20,13$4,2112,0,0^21,13$0,0110,0,0^22,13$0,0110,0,0^23,13$0,0110,0,0^0,14$21,1221,0,0^1,14$23,0112,0,0^3,14$0,0110,0,0^8,14$5,0110,0,0^9,14$102,0110,1,0^10,14$104,2112,0,0^11,14$55,2112,0,0^12,14$55,0110,0,0^13,14$55,0110,0,0^14,14$55,0110,0,0^15,14$55,0110,0,0^16,14$55,0110,0,0^17,14$55,0110,0,0^18,14$55,0110,0,0^19,14$55,0110,0,0^20,14$56,1201,0,0^21,14$0,0110,0,0^22,14$0,0110,0,0^23,14$0,0110,0,0^0,15$0,2112,1,0^1,15$22,0110,0,0^2,15$11,1201,0,0^3,15$23,0112,0,0^8,15$6,1021,0,0^9,15$5,1201,0,0^10,15$6,1201,0,0^11,15$55,0110,0,0^12,15$89,2112,0,0^13,15$89,0112,0,0^14,15$55,0110,0,0^15,15$55,0110,0,0^16,15$64,2112,0,2^17,15$55,0110,0,0^18,15$55,0110,0,0^19,15$55,0110,0,0^20,15$58,1201,0,0^21,15$4,0110,0,0^22,15$27,2112,0,0^23,15$28,2112,0,0^0,16$57,1021,1,0^1,16$57,1001,1,0^2,16$0,0110,1,0^3,16$21,0112,0,0^9,16$0,0110,0,0^10,16$6,1021,0,0^11,16$5,1201,0,0^12,16$5,1201,0,0^13,16$4,1221,0,0^14,16$55,0110,0,0^15,16$55,0110,0,0^16,16$55,0110,0,0^17,16$55,0110,0,0^18,16$55,0110,0,0^19,16$55,0110,0,0^20,16$55,0110,0,0^21,16$5,0110,0,0^22,16$32,2112,0,0^23,16$33,2112,0,0^0,17$84,0110,1,0^1,17$56,1201,1,0^2,17$22,1021,0,0^3,17$23,1001,0,0^5,17$0,0110,0,0^6,17$84,0110,1,0^7,17$0,0110,0,0^9,17$0,0110,0,0^10,17$23,1221,0,0^11,17$23,1201,0,0^12,17$0,0110,0,0^13,17$74,2110,0,0^14,17$55,0110,0,0^15,17$96,1201,0,0^16,17$94,1201,0,0^17,17$92,1201,0,0^18,17$90,1201,0,0^19,17$55,0110,0,0^20,17$6,2112,0,0^21,17$6,0110,0,0^22,17$37,2112,0,0^23,17$38,2112,0,0^0,18$57,1221,1,0^1,18$57,1201,1,0^2,18$21,0110,0,0^3,18$4,2110,0,0^5,18$0,0110,0,0^6,18$0,0110,0,0^7,18$0,0110,0,0^8,18$0,0110,0,0^9,18$0,0110,0,0^10,18$11,2112,0,0^11,18$22,0110,0,0^12,18$23,1201,0,0^13,18$4,2110,0,0^14,18$84,0110,0,0^15,18$97,1201,0,0^16,18$95,1201,0,0^17,18$93,1201,0,0^18,18$91,1201,0,0^19,18$55,0110,0,0^20,18$5,0110,0,0^21,18$41,2112,0,0^22,18$42,2112,0,0^23,18$43,2112,0,0^0,19$0,0110,1,0^1,19$0,0110,1,0^2,19$21,0110,0,0^3,19$4,2112,0,0^8,19$0,0110,0,0^9,19$23,1221,0,0^10,19$22,1201,0,0^11,19$0,0110,1,0^12,19$21,0110,0,0^13,19$6,1021,0,0^14,19$4,1221,0,0^15,19$6,2112,0,0^16,19$5,1201,0,0^17,19$5,1201,0,0^18,19$5,1201,0,0^19,19$5,1201,0,0^20,19$6,0110,0,0^21,19$46,2112,0,0^22,19$47,2112,0,0^23,19$48,2112,0,0^0,20$0,0110,1,0^1,20$0,0110,1,0^2,20$22,0110,0,0^3,20$23,1201,0,0^4,20$0,0110,0,0^5,20$0,0110,0,0^6,20$0,0110,0,0^7,20$0,0110,0,0^8,20$0,0110,0,0^9,20$21,2110,0,0^10,20$57,1021,1,0^11,20$57,2112,1,0^12,20$21,0112,0,0^13,20$4,1201,0,0^14,20$5,1201,0,0^15,20$6,0110,0,0^16,20$23,2112,0,0^17,20$21,1201,0,0^18,20$21,1201,0,0^19,20$21,1201,0,0^20,20$21,1201,0,0^21,20$21,1201,0,0^22,20$23,1201,0,0^23,20$0,0110,0,0^0,21$0,0110,1,0^1,21$57,1021,1,0^2,21$57,1001,1,0^3,21$21,0110,0,0^4,21$0,0110,0,0^5,21$23,2112,0,0^6,21$21,1201,0,0^7,21$21,1201,0,0^8,21$23,1201,0,0^9,21$21,2110,0,0^10,21$56,1021,1,0^11,21$84,0110,1,0^12,21$22,0110,0,0^13,21$21,1221,0,0^14,21$21,1221,0,0^15,21$21,1201,0,0^16,21$22,2110,0,0^17,21$57,1021,1,0^18,21$57,2112,1,0^19,21$0,0110,1,0^20,21$0,0110,1,0^21,21$0,0110,1,0^22,21$21,0110,0,0^23,21$0,0110,0,0^0,22$0,0110,1,0^1,22$84,0110,1,0^2,22$56,1001,1,0^3,22$22,0110,0,0^4,22$11,1201,0,0^5,22$22,1201,0,0^6,22$57,1021,1,0^7,22$57,1001,1,0^8,22$21,0110,0,0^9,22$21,2110,0,0^10,22$57,0110,1,0^11,22$57,1201,1,0^12,22$0,0110,1,0^13,22$0,0110,1,0^14,22$22,1021,0,0^15,22$21,1021,0,0^16,22$22,1001,0,0^17,22$57,0110,1,0^18,22$84,0110,1,0^19,22$22,1021,0,0^20,22$21,1021,0,0^21,22$11,1021,0,0^22,22$23,0110,0,0^23,22$0,0110,0,0^0,23$0,2112,1,0^1,23$57,0110,1,0^2,23$57,2110,1,0^3,23$0,0110,1,0^4,23$0,0110,1,0^5,23$0,0110,1,0^6,23$56,1021,1,0^7,23$84,0110,1,0^8,23$21,0110,0,0^9,23$23,2110,0,0^10,23$21,1001,0,0^11,23$21,1001,0,0^12,23$21,1001,0,0^13,23$21,1001,0,0^14,23$23,0110,0,0^15,23$84,0110,0,0^16,23$23,1021,0,0^17,23$21,1021,0,0^18,23$21,1021,0,0^19,23$23,0110,0,0^20,23$0,0110,0,0^21,23$0,0110,0,0^22,23$0,0110,0,0^23,23$0,0110,0,0&
 
Joined
January 31, 2019
Posts
66
clean

code
Code:
24&24&field&1$23,0^0$4,5^1$23,8^0$4,10^1$19,13^0$0,15^1$19,18^0$0,23&4,0$23,2112,0,0^5,0$21,1201,0,0^6,0$21,1201,0,0^7,0$23,1201,0,0^8,0$84,2112,0,0^9,0$23,2112,0,0^10,0$21,1221,0,0^11,0$21,1221,0,0^12,0$21,1221,0,0^13,0$21,1221,0,0^14,0$23,0112,0,0^15,0$21,2112,0,0^16,0$84,2112,1,0^17,0$56,1201,1,0^18,0$0,2112,1,0^19,0$0,2112,1,0^20,0$0,2112,1,0^21,0$57,0112,1,0^22,0$57,2112,1,0^23,0$0,2112,1,0^1,1$23,2112,0,0^2,1$11,1201,0,0^3,1$21,1201,0,0^4,1$22,1201,0,0^5,1$84,2112,1,0^6,1$57,2112,1,0^7,1$22,1221,0,0^8,1$21,1201,0,0^9,1$22,1201,0,0^10,1$0,2112,1,0^11,1$0,2112,1,0^12,1$57,1021,1,0^13,1$57,2112,1,0^14,1$21,0112,0,0^15,1$21,2112,0,0^16,1$57,1221,1,0^17,1$57,1201,1,0^18,1$22,1021,0,0^19,1$11,1021,0,0^20,1$22,2112,0,0^21,1$56,1221,1,0^22,1$84,2112,1,0^23,1$0,2112,1,0^1,2$21,2112,0,0^2,2$0,2112,1,0^3,2$0,2112,1,0^4,2$0,2112,1,0^5,2$57,0110,1,0^6,2$57,1201,1,0^7,2$22,0112,0,0^8,2$21,1021,0,0^9,2$21,1001,0,0^10,2$21,1001,0,0^11,2$22,2112,0,0^12,2$84,2112,1,0^13,2$56,1201,1,0^14,2$21,0112,0,0^15,2$23,1021,0,0^16,2$21,1021,0,0^17,2$21,1021,0,0^18,2$23,0110,0,0^20,2$21,2112,0,0^21,2$57,1221,1,0^22,2$57,1201,1,0^23,2$0,2112,1,0^1,3$23,1021,0,0^2,3$21,1021,0,0^3,3$21,1021,0,0^4,3$21,1021,0,0^5,3$21,1021,0,0^6,3$21,1021,0,0^7,3$23,0110,0,0^8,3$6,2112,0,0^9,3$5,1021,0,0^10,3$4,1021,0,0^11,3$21,2110,0,0^12,3$57,0110,1,0^13,3$57,1201,1,0^14,3$21,0112,0,0^15,3$0,0110,0,0^16,3$0,0110,0,0^17,3$0,0110,0,0^20,3$23,1021,0,0^21,3$22,2112,0,0^22,3$0,2112,1,0^23,3$0,2112,1,0^0,4$48,0110,0,0^1,4$47,0110,0,0^2,4$46,0110,0,0^3,4$6,2112,0,0^4,4$5,1021,0,0^5,4$5,1021,0,0^6,4$5,1021,0,0^7,4$5,1021,0,0^8,4$6,0110,0,0^9,4$4,1001,0,0^10,4$6,1201,0,0^11,4$21,2112,0,0^12,4$0,2112,1,0^13,4$22,1021,0,0^14,4$23,1001,0,0^16,4$0,0110,0,0^17,4$0,0110,0,0^18,4$0,0110,0,0^19,4$0,0110,0,0^20,4$4,0110,0,0^21,4$21,2112,0,0^22,4$0,2112,1,0^23,4$0,2112,1,0^0,5$43,0110,0,0^1,5$42,0110,0,0^2,5$41,0110,0,0^3,5$5,2112,0,0^4,5$55,0110,0,0^5,5$91,1021,0,0^6,5$93,1021,0,0^7,5$95,1021,0,0^8,5$97,1021,0,0^9,5$84,2112,0,0^10,5$4,0112,0,0^11,5$23,1021,0,0^12,5$22,2112,0,0^13,5$11,0110,0,0^16,5$0,0110,0,0^17,5$0,0110,0,0^18,5$0,0110,0,0^19,5$0,0110,0,0^20,5$4,0112,0,0^21,5$21,2112,0,0^22,5$57,1021,1,0^23,5$57,1001,1,0^0,6$38,0110,0,0^1,6$37,0110,0,0^2,6$6,2112,0,0^3,6$6,0110,0,0^4,6$55,2112,0,0^5,6$90,1021,0,0^6,6$92,1021,0,0^7,6$94,1021,0,0^8,6$96,1021,0,0^9,6$55,2112,0,0^10,6$74,0112,0,0^11,6$0,0110,0,0^12,6$23,1021,0,0^13,6$23,1001,0,0^15,6$0,0110,0,0^16,6$0,0110,0,0^17,6$84,2112,1,0^18,6$0,0110,0,0^19,6$0,0110,0,0^20,6$23,1221,0,0^21,6$22,1201,0,0^22,6$56,1021,1,0^23,6$84,2112,1,0^0,7$33,0110,0,0^1,7$32,0110,0,0^2,7$5,2112,0,0^3,7$55,2112,0,0^4,7$55,2112,0,0^5,7$55,2112,0,0^6,7$55,2112,0,0^7,7$55,2112,0,0^8,7$55,2112,0,0^9,7$55,2112,0,0^10,7$4,1001,0,0^11,7$5,1021,0,0^12,7$5,1021,0,0^13,7$6,1201,0,0^15,7$0,0110,0,0^16,7$0,0110,0,0^17,7$0,0110,0,0^18,7$0,0110,0,0^19,7$0,0110,0,0^20,7$21,2110,0,0^21,7$0,2112,1,0^22,7$57,1221,1,0^23,7$57,1201,1,0^0,8$28,0110,0,0^1,8$27,0110,0,0^2,8$4,2112,0,0^3,8$58,1021,0,0^4,8$55,2112,0,0^5,8$55,2112,0,0^6,8$55,2112,0,0^7,8$62,2112,0,1^8,8$55,2112,0,0^9,8$55,2112,0,0^10,8$89,2110,0,0^11,8$89,0110,0,0^12,8$55,0110,0,0^13,8$6,1021,0,0^14,8$5,1021,0,0^15,8$6,1201,0,0^16,8$0,0110,0,0^17,8$0,0110,0,0^18,8$0,0110,0,0^19,8$0,0110,0,0^20,8$23,2110,0,0^21,8$11,1021,0,0^22,8$22,2112,0,0^23,8$0,2112,1,0^3,9$56,1021,0,0^4,9$55,2112,0,0^5,9$55,2112,0,0^6,9$55,2112,0,0^7,9$55,2112,0,0^8,9$55,2112,0,0^9,9$55,2112,0,0^10,9$55,2112,0,0^11,9$55,2112,0,0^12,9$55,0110,0,0^13,9$104,0110,0,0^14,9$102,2112,1,0^15,9$5,2112,0,0^16,9$0,0110,0,0^17,9$0,0110,0,0^18,9$0,0110,0,0^19,9$0,0110,0,0^21,9$0,0110,0,0^22,9$23,2110,0,0^23,9$21,1001,0,0^0,10$0,0110,0,0^1,10$0,0110,0,0^2,10$0,0110,0,0^3,10$4,0110,0,0^4,10$55,0110,0,0^5,10$55,2112,0,0^6,10$55,2112,0,0^7,10$55,2112,0,0^8,10$55,2112,0,0^9,10$55,2112,0,0^10,10$55,2112,0,0^11,10$55,0110,0,0^12,10$103,1021,0,0^13,10$101,0110,0,0^14,10$102,2112,1,0^15,10$5,2112,0,0^16,10$0,0110,0,0^17,10$0,0110,0,0^18,10$0,0110,0,0^21,10$0,0110,0,0^22,10$0,0110,0,0^23,10$0,0110,0,0^0,11$0,0110,0,0^1,11$84,0110,1,0^2,11$0,0110,0,0^3,11$6,1021,0,0^4,11$6,1201,0,0^5,11$58,1001,0,0^6,11$56,2110,0,0^7,11$56,0110,0,0^8,11$58,1021,0,0^9,11$55,2112,0,0^10,11$55,2112,0,0^11,11$6,2112,0,0^12,11$6,1201,0,0^13,11$59,1201,0,0^14,11$59,1201,0,0^15,11$4,2112,0,0^16,11$0,0110,0,0^17,11$0,0110,0,0^18,11$4,1201,0,0^19,11$6,1201,0,0^21,11$0,0110,0,0^22,11$0,0110,0,0^23,11$0,0110,0,0^3,12$0,0110,0,0^4,12$6,1021,0,0^5,12$4,1021,0,0^8,12$4,0110,0,0^9,12$59,1001,0,0^10,12$59,1001,0,0^11,12$6,1021,0,0^12,12$6,0110,0,0^13,12$55,0110,0,0^14,12$55,0110,0,0^15,12$58,1201,0,0^16,12$56,0112,0,0^17,12$56,0112,0,0^18,12$58,1221,0,0^19,12$6,1021,0,0^20,12$6,1201,0,0^21,12$0,0110,0,0^22,12$84,2112,1,0^23,12$0,0110,0,0^3,13$0,0110,0,0^4,13$0,0110,0,0^8,13$5,0110,0,0^9,13$102,0110,1,0^10,13$101,2112,0,0^11,13$103,1201,0,0^12,13$55,0110,0,0^13,13$55,0110,0,0^14,13$55,0110,0,0^15,13$55,0110,0,0^16,13$55,0110,0,0^17,13$55,0110,0,0^18,13$55,0110,0,0^19,13$55,0110,0,0^20,13$4,2112,0,0^21,13$0,0110,0,0^22,13$0,0110,0,0^23,13$0,0110,0,0^0,14$21,1221,0,0^1,14$23,0112,0,0^3,14$0,0110,0,0^8,14$5,0110,0,0^9,14$102,0110,1,0^10,14$104,2112,0,0^11,14$55,2112,0,0^12,14$55,0110,0,0^13,14$55,0110,0,0^14,14$55,0110,0,0^15,14$55,0110,0,0^16,14$55,0110,0,0^17,14$55,0110,0,0^18,14$55,0110,0,0^19,14$55,0110,0,0^20,14$56,1201,0,0^21,14$0,0110,0,0^22,14$0,0110,0,0^23,14$0,0110,0,0^0,15$0,2112,1,0^1,15$22,0110,0,0^2,15$11,1201,0,0^3,15$23,0112,0,0^8,15$6,1021,0,0^9,15$5,1201,0,0^10,15$6,1201,0,0^11,15$55,0110,0,0^12,15$89,2112,0,0^13,15$89,0112,0,0^14,15$55,0110,0,0^15,15$55,0110,0,0^16,15$64,2112,0,2^17,15$55,0110,0,0^18,15$55,0110,0,0^19,15$55,0110,0,0^20,15$58,1201,0,0^21,15$4,0110,0,0^22,15$27,2112,0,0^23,15$28,2112,0,0^0,16$57,1021,1,0^1,16$57,1001,1,0^2,16$0,0110,1,0^3,16$21,0112,0,0^9,16$0,0110,0,0^10,16$6,1021,0,0^11,16$5,1201,0,0^12,16$5,1201,0,0^13,16$4,1221,0,0^14,16$55,0110,0,0^15,16$55,0110,0,0^16,16$55,0110,0,0^17,16$55,0110,0,0^18,16$55,0110,0,0^19,16$55,0110,0,0^20,16$55,0110,0,0^21,16$5,0110,0,0^22,16$32,2112,0,0^23,16$33,2112,0,0^0,17$84,0110,1,0^1,17$56,1201,1,0^2,17$22,1021,0,0^3,17$23,1001,0,0^5,17$0,0110,0,0^6,17$84,0110,1,0^7,17$0,0110,0,0^9,17$0,0110,0,0^10,17$23,1221,0,0^11,17$23,1201,0,0^12,17$0,0110,0,0^13,17$74,2110,0,0^14,17$55,0110,0,0^15,17$96,1201,0,0^16,17$94,1201,0,0^17,17$92,1201,0,0^18,17$90,1201,0,0^19,17$55,0110,0,0^20,17$6,2112,0,0^21,17$6,0110,0,0^22,17$37,2112,0,0^23,17$38,2112,0,0^0,18$57,1221,1,0^1,18$57,1201,1,0^2,18$21,0110,0,0^3,18$4,2110,0,0^5,18$0,0110,0,0^6,18$0,0110,0,0^7,18$0,0110,0,0^8,18$0,0110,0,0^9,18$0,0110,0,0^10,18$11,2112,0,0^11,18$22,0110,0,0^12,18$23,1201,0,0^13,18$4,2110,0,0^14,18$84,0110,0,0^15,18$97,1201,0,0^16,18$95,1201,0,0^17,18$93,1201,0,0^18,18$91,1201,0,0^19,18$55,0110,0,0^20,18$5,0110,0,0^21,18$41,2112,0,0^22,18$42,2112,0,0^23,18$43,2112,0,0^0,19$0,0110,1,0^1,19$0,0110,1,0^2,19$21,0110,0,0^3,19$4,2112,0,0^8,19$0,0110,0,0^9,19$23,1221,0,0^10,19$22,1201,0,0^11,19$0,0110,1,0^12,19$21,0110,0,0^13,19$6,1021,0,0^14,19$4,1221,0,0^15,19$6,2112,0,0^16,19$5,1201,0,0^17,19$5,1201,0,0^18,19$5,1201,0,0^19,19$5,1201,0,0^20,19$6,0110,0,0^21,19$46,2112,0,0^22,19$47,2112,0,0^23,19$48,2112,0,0^0,20$0,0110,1,0^1,20$0,0110,1,0^2,20$22,0110,0,0^3,20$23,1201,0,0^4,20$0,0110,0,0^5,20$0,0110,0,0^6,20$0,0110,0,0^7,20$0,0110,0,0^8,20$0,0110,0,0^9,20$21,2110,0,0^10,20$57,1021,1,0^11,20$57,2112,1,0^12,20$21,0112,0,0^13,20$4,1201,0,0^14,20$5,1201,0,0^15,20$6,0110,0,0^16,20$23,2112,0,0^17,20$21,1201,0,0^18,20$21,1201,0,0^19,20$21,1201,0,0^20,20$21,1201,0,0^21,20$21,1201,0,0^22,20$23,1201,0,0^23,20$0,0110,0,0^0,21$0,0110,1,0^1,21$57,1021,1,0^2,21$57,1001,1,0^3,21$21,0110,0,0^4,21$0,0110,0,0^5,21$23,2112,0,0^6,21$21,1201,0,0^7,21$21,1201,0,0^8,21$23,1201,0,0^9,21$21,2110,0,0^10,21$56,1021,1,0^11,21$84,0110,1,0^12,21$22,0110,0,0^13,21$21,1221,0,0^14,21$21,1221,0,0^15,21$21,1201,0,0^16,21$22,2110,0,0^17,21$57,1021,1,0^18,21$57,2112,1,0^19,21$0,0110,1,0^20,21$0,0110,1,0^21,21$0,0110,1,0^22,21$21,0110,0,0^23,21$0,0110,0,0^0,22$0,0110,1,0^1,22$84,0110,1,0^2,22$56,1001,1,0^3,22$22,0110,0,0^4,22$11,1201,0,0^5,22$22,1201,0,0^6,22$57,1021,1,0^7,22$57,1001,1,0^8,22$21,0110,0,0^9,22$21,2110,0,0^10,22$57,0110,1,0^11,22$57,1201,1,0^12,22$0,0110,1,0^13,22$0,0110,1,0^14,22$22,1021,0,0^15,22$21,1021,0,0^16,22$22,1001,0,0^17,22$57,0110,1,0^18,22$84,0110,1,0^19,22$22,1021,0,0^20,22$21,1021,0,0^21,22$11,1021,0,0^22,22$23,0110,0,0^23,22$0,0110,0,0^0,23$0,2112,1,0^1,23$57,0110,1,0^2,23$57,2110,1,0^3,23$0,0110,1,0^4,23$0,0110,1,0^5,23$0,0110,1,0^6,23$56,1021,1,0^7,23$84,0110,1,0^8,23$21,0110,0,0^9,23$23,2110,0,0^10,23$21,1001,0,0^11,23$21,1001,0,0^12,23$21,1001,0,0^13,23$21,1001,0,0^14,23$23,0110,0,0^15,23$84,0110,0,0^16,23$23,1021,0,0^17,23$21,1021,0,0^18,23$21,1021,0,0^19,23$23,0110,0,0^20,23$0,0110,0,0^21,23$0,0110,0,0^22,23$0,0110,0,0^23,23$0,0110,0,0&
Clean, I think it'll encourage more aggressive gameplay with the two different paths! Also seems like a lot of classes would be viable choices on this map.
 

PT Map Making Team
Joined
January 1, 2019
Posts
18
Location
Michigan
I like how you can go a completely different path to get back to your own flag.

btw how do you get a clean image of the map? I think that information has always eluded me somehow
 

zen

Joined
January 14, 2019
Posts
202
Location
VA
I like the map, seems solid for small groups, and has a lot of opportunities for flag recovery.
I like how you can go a completely different path to get back to your own flag.

btw how do you get a clean image of the map? I think that information has always eluded me somehow
View --> Toggle Tile View : Off Highlight Cursor: Off , then save your image.
 
Top Bottom